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Abstract
In this paper, we describe the novel technique of using 
leading edge X-ray microscopy (XRM) technology to replace 
physical cross-sectioning in failure analysis (FA) and 3-dimensional 
integrated circuit (3DIC) process development. Contrary to 
general consensus that 3D X-ray is too slow, we explain how 
XRM can be used to obtain high quality cross-section images 
within 5-300 minutes per measurement depending on the 
physical properties (materials, feature sizes, and outer dimensions) 
of the sample and the minimum tolerable image quality needed 
to visualize a defect. The specifics of the inspection technique 
itself and how X-rays interact with the sample to achieve high-
quality images will be discussed and contrasted with conventional 
3D micro computed tomography (MicroCT) technology. Furthermore, 
understanding the effects that imaging parameters, such as 
voltage, power, exposure time, resolution, number of projections, 
etc, have in the quality of an image, can help the user reduce 
the 3D X-ray inspection time considerably. A TSMC test vehicle 
package is used to illustrate the effects of inspection time in 
image quality, and to compare and contrast the quality of an 
optical image taken from a physical cross-section and a virtual 
cross-section image taken from an XRM tomography. 

Introduction
2D X-ray and conventional MicroCT technologies used in 
the development of ball grid array, thermal compression 
bonding, and flip chip technologies cannot be extended to 
provide the image quality needed for the development of 
3DIC packages. While the resolution provided by these 
techniques is useful to image large voids, rough misalignments, 
and non-contact opens from top-views of first- and second-level 
interconnects, conventional X-ray techniques quickly become 
inadequate as more layers with smaller feature sizes are stacked 
on top of each other as it is inthe case of multi-chip packages, 
interposers, and through-silicon vias [1]. Physical cross-sectioning 
is still the most widely used technique for 3DIC package 
development because the high quality (high resolution and 
high contrast) side-view images give enough detail to measure 
critical structures and defects. Despite these advantages, 
physical cross-sectioning is far from an optimal solution to 
address the increasing requirements of 3DIC packages because 
it is destructive and time consuming. In addition, stress relief 
produced by cross-sectioning may in fact obfuscate clues—
by introducing debris or damaging soft layers—about the 
original root cause of the defect of interest. 

3D X-ray Microscopy: A Non-destructive 
High Resolution Imaging Technology that 
Replaces Physical Cross-sectioning for 
3DIC Packaging  
Bruce Johnson et al., 2013
Carl Zeiss X-ray Microscopy, Ltd.  

Tulip Chou, Y.L. Kuo  
Taiwan Semiconductor Manufacturing Company, Ltd.

Originally published at ASMC 2013: Proceedings from the 24th Annual Advanced Semiconductor 
Manufacturing Conference 

Figure 1  Proposed use of non-destructive X-ray microscopy (XRM) to improve the units per hour (UPH) of intact samples requiring inspection in the Failure Analysis 
Workflow and to shorten the time-to-market of 3DIC process development [3]. The traditional non-destructive techniques found in most FA labs today are becoming 
unsuitable to address the increasingly complex multilayered architectures of 3DIC packages. X-ray radiography (which includes “2D X-ray” and “3D X-ray MicroCT”) 
and scanning acoustic microscopy have been the standard non-destructive techniques for locating and identifying failure causes. However, the resolution that they 
deliver is no longer able to meet the requirements of advanced packages, forcing users to resort to destructive techniques.  

3D X-ray Microscopy Replaces Physical Cross-sectioning of 3DIC Packaging
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Furthermore, defects can be completely missed if the incorrect 
polishing orientation is chosen. XRM, a powerful 3D X-ray 
variant technique, has demonstrated success in replacing 
physical cross-sections in FA labs and shows great potential 
to bridge the gaps in 3DIC production metrology [1,2]. Unlike 
2D X-ray and conventional MicroCT techniques that rely 
exclusively in geometric magnification with low signal-to-noise 
flat panel detectors, XRM employs geometric and optical image 
magnification to achieve higher spatial resolution, even for 
large package sizes. In this way XRM is being used to collect 
high-quality non-destructive images that are comparable in 
quality to the ones obtained from scanning electron microscope 
(SEM) and optical micrographs, enabling an unparalleled 
imaging capability to the FA and process development 
workflows (see Figure 1) [3].  

Recent advances in XRM obtain near-SEM quality images with 
reasonable data collection times. To appreciate the capabilities 
and limitations of this novel technique as it applies to 3DIC 
packaging, it is important to understand the differences between 
MicroCT and XRM techniques and the way X-rays interact with 
the sample in XRM to achieve high quality images. 

MicroCT vs XRM
3D X-ray data is a virtual volumetric region in space that is 
reconstructed from many 2D X-ray projections passing through 
a sample as it rotates about an axis. The two most known 
3D data collection techniques to the semiconductor industry 
are laminography and computed tomography (CT). 

Despite being fast, laminography has physical limitations—
2D projections are collected at higher incident angles, causing 
image artifacts—that fundamentally limit its ability to achieve 
high spatial resolution. CT, on the other hand, uses a filtered-
back projection reconstruction technique to generate 3D virtual 
models of internal structures from 2D X-ray projections that are 
collected in small intervals over a range of angles, typically 180° 
or 360°. MicroCT was developed to achieve micrometer voxel (the 
3D analog of a 2D pixel) resolution. However, this technique is 
subject to tradeoffs between sample size and achievable spatial 
resolution. The relationship can be modeled by (1),

(1)
 

where dtotal is the total spatial resolution, rD is detector pixel 
size, S is X-ray spot size, M is geometric magnification, rso is 
source-to-object distance, and rod is object-to-detector distance, 
respectively and graphically represented in Figure 2 [2].

Furthermore, to maximize spatial resolution, MicroCT relies on 
maximizing geometric magnification, M, which is described by 
(2) below.

(2)

Thus, in order to maximize geometric magnification, the 
source-to-object distance must be made very small, limiting 
the working distance available for high-resolution analysis. As a 
result, high-resolution imaging of larger samples is not possible. 
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Figure 2  The red region shows the tradeoff between resolution and sample size in conventional MicroCT. The blue line shows “resolution-at-distance” achievable with 
XRM enhanced optics. The image on the right illustrates how geometric magnification is decreased in a full-angle CT scan as the sample size increases.

Geometric Magnification-based
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To improve on this limitation, MicroCT can continue to develop 
in three main ways:  

a) Increase equipment footprint: This increases the  
sample-to-detector distance, thus achieving higher  
geometric magnification for larger samples. However,  
the impact of this leads not only to a larger equipment,  
but also degrades the image quality because having the  
source and detector so far apart reduces the signal-to-noise 
ratio of the image. 

b) Reduce source spot size: The X-ray beam is generated  
by focusing an electron beam onto a target material (typically 
Tungsten or Diamond). In order to achieve a small spot size, 
high densities of energy need to be focused onto a very  
small region, where heat dissipation becomes an important 
challenge that can cause short filament lifetimes and/or  
unstable X-ray power output. Commercially available sources 
with spot sizes down to ~0.25 µm are available, but they  
are limited to low power levels (2-5 W) only and thus lower  
energies (up to ~90 kV). At this energy range (0-90 kV),  
the effective penetration of highly attenuating materials  
(as it is typical in materials found in 3DIC packages, like  
SAC305 solders, Cu, Au, fiber glass, etc.) is minimal, making 
these sources unsuitable for a wide range of semiconductor 
samples. In contrast, XRM does not rely on small source spot 
sizes to achieve high resolution, since magnification is mostly 
achieved by optical means as opposed to geometric means.  
For this reason, higher power sources can be used in these  
systems, allowing for higher voltages that can penetrate 
through denser materials. A typical X-ray source used in  
XRM equipment can achieve stable 10 W output at 150 kV  
with spot sizes of 1-3 µm and achieve higher spatial resolution 
than MicroCT with a source spot size of 0.25 µm. 

c) Reduce pixel size of flat panel detectors: Current detector 
technologies being used in X-ray systems include flat panel  
detectors and charge-coupled detectors (CCD). Flat panel  
detectors are able to obtain larger fields of view (FOV) at  
the expense of lower signal and larger pixel sizes (typically  
200-300 µm) whereas CCDs offer smaller FOVs at a gain  
in quantum efficiency and pixel size (typically ~35 µm).   
Increasing the size of a flat panel detector (e.g. going from  
a 4 Mp to a 16 Mp) only increases the FOV and digital  
magnification, not spatial resolution. Digital magnification  
does not lead to better image detail; it only gives the ability  
to zoom-in further in the display screen.  

XRM takes advantage of state-of-the-art detectors (optics with 
enhanced scintillators) developed for synchrotron facilities to 
achieve high spatial resolution. Spatial resolution of an image 
is not only achieved by having high pixel resolution, but also by 
having high contrast and a high signal-to-noise ratio, so as to be 
able to distinguish between two neighboring features, in space, 
with high fidelity. In XRM, the physical and crystallographic 
properties of state-of-the-art scintillators are tuned for objectives 
of varying magnifications, allowing the useful part of the target 
energy spectrum to be converted into visible light with higher 
quantum efficiencies than in conventional flat panel detectors. 
These photons are then further magnified in the objectives, 
which are subsequently registered with a CCD. 

It is precisely this feature—optical magnification with enhanced 
spectral properties—which allows XRM to achieve high spatial 
resolution and high contrast even at large working distances 
(see Figure 3). 

Figure 3  XRM does not depend on geometric magnification to achieve high spatial resolution.

3D X-ray Microscopy Replaces Physical Cross-sectioning of 3DIC Packaging
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Effects of imaging parameters to image quality  
and scan times
All CT reconstructed scans are subject to various imaging artifacts 
that can affect overall image quality. Generally speaking, 3DIC 
packages require better image quality (higher spatial resolution 
and higher contrast) than its 2DIC counterparts, so understanding 
artifacts and their reduction techniques is essential to achieve 
SEM-like images non-destructively. Although not discussed here, 
among the most common types of CT artifacts affecting semi-
conductor samples are beam hardening, under sampling, and 
photon starvation [4]. Likewise, understanding the effects that 
imaging parameters have on the reconstructed data can help 
understand the capabilities and limitations of XRM as it applies 
to replacing physical cross-sections in specific applications in 
3DIC packages and as the technology evolves to address gaps 
in in-line metrology. 

a) Energy (kV): The energy of the source determines the  
extent to which the X-rays penetrate through the sample, 
which in turn determines the percent absorption and percent 
transmission through the sample. If a sample is highly  
attenuating—composed of high-atomic number (Z) materials 
or if it is thick—then higher energy X-rays are needed to  
penetrate the sample and obtain acceptable values of  

transmission. During reconstruction, a grey scale value is  
assigned to each voxel based on the percent transmission of 
X-rays passing through each voxel at each angle of projection 
in the tomography. These grey scale values determine the 
relative contrast that distinct features and/or materials will 

 display in the virtual cross-section image. An ideal tomography 
has transmission values between 25% and 35% through all 
the angle projections through the feature of interest. For 

 example, low energy is required to generate absorption  
contrast between air bubbles and low-attenuating underfill 
layers. If high energies are used instead, the transmission 
through the underfill layer would be too high (<90%), 

 creating very little contrast in the air bubbles. Alternatively, 
high energy is needed to generate contrast between voids 
and solder in solder bumps (see Figure 4). If low energies are 
used, the transmission will be too low and little signal will go 
through the sample. Filters that absorb the lower energies 
from the X-ray spectrum are commonly used to boost the 
transmission through high-attenuating materials by making 
the average  energy of the X-ray beam higher. Filters are also 
used in the same way to reduce beam hardening artifacts [4]. 

Figure 4  The left image shows the transmission of a TSMC test vehicle sample using a source setting of 40 kV. The right image shows the same FOV at 150 kV 
(all other image acquisition parameters remain constant). The image on the right shows better contrast between the Cu pads and solder bump as highlighted by 
the red arrows. The blue arrows show how voids become more distinctly visible (better contrast) at higher voltages.

390 µm390 µm
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Figure 5  Effect of photon starvation. Despite having the same transmission (and relative contrast) value, the image on the right is much higher quality. While the left image 
shows a 2D projection collected using an exposure time of 0.01 seconds, the image on the right was collected using an exposure time of 5 seconds. A high signal-to-noise 
ratio is required to distinguish a small feature against its background noise. This is particularly important to distinguish submicron measurements of voids or cracks in 
10 µm through-silicon vias, for example.

Figure 6  The system configuration of the left uses less geometric magnification 
and a higher objective to achieve an unspecified spatial resolution. The system 
configuration of the middle uses more geometric magnification and a lower 
objective to achieve the same spatial resolution as the system on the left. 
The image on the right shows a TSMC test vehicle package as it was mounted 
on the equipment at 90°. 

b) Signal-to-noise Ratio: After the X-rays are converted  
into photons by the scintillator, they are condensed by  
the objectives and registered in the CCD. The number of  
photons that hit each pixel of the scintillator is referred  
to as counts. 

 A good quality image has between 3,000-10,000 counts  
to make sure that each pixel is clearly registered as feature 
or background and not noise. Having less-than-ideal counts 
leads to spatial artifacts commonly referred to as photon  
starvation depicted in Figure 5. Counts are linearly proportional 
to time of exposure. For example, 10x the exposure time for  
a projection will lead to 10x the number of counts (and a 
clear improvement in the signal-to-noise ratio). Counts 
are also affected by the distance between the source and  
detector—longer exposure times are required to get the  
appropriate counts in larger samples. For this reason, it is always 
best to minimize the distance between the source and detectors 
while maintaining the desired geometric magnification ratio. 
Counts also behave proportionally with the power setting 
of the source—the higher the power, the higher the counts. 
Finally, using X-ray source filters (which is highly recommended 
to improve transmission and reduce artifacts) [4] inevitably 
reduces the total photon counts. Therefore, a tradeoff exists 
between using thicker filters to boost transmission of highly  
attenuating samples and using no filters to improve the 
signal-to-noise ratio.

c) Geometric and Optical Magnification: The same total 
 magnification of 40X can be achieved by using a 4X objective 

lens with geometric magnification of 10X or by using a 10X  
objective lens with geometric magnification of 4X, for example,  
as demonstrated in Figure 6. The final selection of which  
objective to use will be determined by the sample size and  
the desired spatial resolution. 

390 µm

Sample
mountingSource

Source

Sample Sample

4X detector10X detector
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d) Field of View and Voxel Size: FOV and voxel size are  
inversely proportional, much like in all other microscope  
systems—highest resolutions are limited to small FOVs, while 
large FOVs can only yield low resolutions. State-of-the-art  
graphics cards are used to handle the memory-intensive  
computations needed for reconstructing a large number of  
2D X-ray projections. Reconstructing large FOVs with small  
pixel sizes would take too long (upwards of 1 hour), the  
generated files would be too large (upwards of 100 GB) 

 and provide an excessive amount of data that would not 
 be used. Generally speaking, the resolution of a scan is  

chosen first—based on a priori knowledge of the size of  
the suspected defect—dictating the size of the FOV. It is  
because of this limitation—achieving large FOVs in practical 
times—that existing XRM equipment architectures are best  
suited for FA labs, and not for in-line metrology of large samples  
(i.e. 300 mm wafers). It is worth mentioning that XRM is  
capable of achieving high spatial resolutions in intact wafers, 
but the times needed to collect good quality CT data are  
not very practical. Generally speaking, in current XRM  
equipment architectures it would take 3-20 hours to image  
a submicron feature in an intact wafer, and it would all  
depend on location of the ROI in the wafer (which will vary  
the axis of rotation and hence the geometric magnification)  
and the materials used in the wafer (which will dictate the  
energy and exposure time needed). The route to achieving  
fast, high-resolution 3D X-ray metrology is to improve the  
TPT of single measurements (i.e. one CT scan) with small  
ROIs by making software and hardware improvements and  
by innovating new equipment architectures. 

Experimental
An 18 x 21 mm TSMC test vehicle sample with suspected failure 
locations was imaged using Xradia 500 Versa microscope. A 
210 minute scan was setup using 0.7 µm/voxel spatial resolution, 
~30% transmission and ~5,000 photon counts through the 0° 
view using a total of 1600 projections from -90° to +90°. The 
raw data was then reconstructed into a 3D dataset in less than 
3 minutes. The resulting 3D model is shown in Figure 7.

Upon reviewing the 3D data set, several defects were clearly  
visible in the scanned region, including a solder bump non-wet  
and heavy voiding in the BGA layer. A virtual cross-section image 
was exported and used to compare to the same location after  
physical cross-section took place as shown in Figures 8-9.  

Figure 7  Virtual 3D model of the internal structure of TSMC test vehicle sample. 
The FOV is 0.7 mm3 and the spatial resolution is 0.7 µm/voxel. The three colored 
boxes represent orthogonal, virtual cross-section planes through the volume.  
The 3DViewer Software makes it easy to navigate through the volumetric data 
to find the non-wet defect as well as large voids in the BGA bumps.  

Figure 8  Comparison between images collected with an optical microscope taken 
after destructive cross-sectioning (top) and a virtual cross-section image taken 
from the non-destructive XRM computer tomography scan (bottom). The red arrow 
points to a ~2 µm void between the Cu pad and the solder bump that was missed 
by physical cross-section. High-resolution volumetric data is powerful because it 
allows the user to review an infinite number of virtual cross-sections through any 
direction through the volumetric dataset, shortening the time that it takes to
 isolate a defect and determine the cause of package failure, all in one scan. 

Figure 9  The left image is a zoomed-in image of Figure 8 while the right image 
shows an optical micrograph image of the defect taken with a higher objective lens. 
Note the high contrast and spatial resolution attained with XRM, where a 0.9 µm 
non-wet separation can be clearly measured. The red arrows show polishing defects 
caused from physical cross-section. These artificially introduced defects can often 
times make it difficult to determine the location and size of the actual defects. Since 
XRM is non-destructive, the sample is intact and impervious to the introduction of 
polishing defects. 

Optical microscope image from physical cross-section (destructive)

Virtual cross-section image from XRM volumetric data (non-destructive)

100 µm

0.9 µm0.9 µm

15.6 µm 15.6 µm
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The thickness of the virtual cross-section image plane is 
0.7 µm. Using the same data collected in the experiment, 
it is possible to simulate shorter scan times—by removing 
projections (see Figure 10). Despite compromising image 
quality by introducing under-sampling defects for improved 
TPT, the non-wet defect can still clearly be seen and measured. Figure 11 
shows a different virtual cross-section of the entire FOV of the scan. 

Conclusions
Detector technology advancements in the past five years 
have allowed X-ray microscopes to bridge the inspection gap between 
high-resolution, destructive SEM and low-resolution, 
non-destructive MicroCT capabilities. XRM is routinely being used to 
replace physical cross-section of complex multi-layered devices with fine 
pitch interconnects in 3DIC packages. Understanding the effect that ima-
ging parameters have in the resulting image quality of a scan for a specific 
sample type can lead to the reduction 
of data collection and reconstruction times, thus improving overall UPH, 
providing unprecedented capabilities to FA labs and package develop-
ment facilities. Furthermore, optical magnification with enhanced spectral 
properties offered by state-of-the-art detectors is enabling high resoluti-
on imaging at large working 
distances, enabling the imaging of intact wafers with high 
resolution; though TPTs are still impractical for this application, the 
capability now exists. As XRM technology becomes pervasive in FA labs, 
more studies correlating XRM with SEM and optical images will validate 
the performance of XRM and the industry will continue to use this non-
destructive technique as a workhorse to replace physical cross-section. 
Finally, improvements in software, hardware and equipment architectures 
will continue 
to evolve to make XRM technology more compatible with 
high-volume manufacturing metrology needs. 

Figure 10  Data reconstructed from the original scan using 1600 projections  showing the results that were obtained from running a 210 minute scan; 800 projections 
simulating a 110 minute scan; 400 projections simulating a 55 minute scan; 200 projections simulating a 30 minute scan; 100 projections simulating a 15 minute scan; 
and 50 projections simulating an 8 minute scan. The set of images clearly depicts the introduction of under sampling CT artifacts. Small number of projections and/or 
limited angle scans (as in the case of laminography equipment architectures) will introduce these under-sampling artifacts during data reconstruction. These artifacts 
become more critical if the features being measured are below 10 µm. 

Figure 11  Different virtual cross-section of entire FOV of the 
scan where under-sampling artifacts are more noticeable. 
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Introduction
Packaging of integrated circuits is growing more and more 
complex – and housing multiple die in a single package is just 
one challenge chipmakers face. Typically, these die are connected 
in complex ways, and chipmakers must contend with shrinking 
feature sizes and interconnects, escalating device density and 
package size, thinner layers, and a widening variety of materials.

As a result, failure analysis (FA) on advanced packages is becoming 
increasingly difficult. The goal of FA is to isolate where the failure 
is located, and then figure out what it is and why it happened – 
its root cause. Visualization of defects aids determination of the 
root cause. Packages are essentially opaque boxes containing 
electrical connections. Often, to visualize a defect in the electri-
cal path, physical failure analysis (PFA) is applied.

Maintaining integrity of the defect site is critical. If a sample 
is cut or reduced in size, further electrical analysis may not be 
possible, and the structure may be disrupted by introducing 
artifacts or changing the stress profile from that of an intact 
sample. Conventional non-destructive methods have become 
less effective at visualizing defects in many of today’s packages, 
creating a significant need for new non-destructive approaches 
such as 3D X-ray microscopy (XRM).

Benefits of X-ray microscopy
In the typical board- and package-level FA lab workflow, 
failures are evaluated non-destructively prior to destructive 
analysis (Figure 1). The most common non-destructive PFA 
techniques for isolating and visualizing defects are optical 
inspection, 2D X-ray, and scanning acoustic microscopy (SAM). 
Due to increased package complexity, these imaging techniques 
are becoming less effective.

XRM, a relatively new FA technique, uniquely provides a 
high-resolution, non-destructive method to find and image 
defects in 3D. It thereby provides critical knowledge to guide 
next steps. Application of XRM typically fits between fault 
isolation and root cause determination (Figure 1).

Once the fault location is isolated, traditionally, a next step 
is a visit to the “coroner’s office” – that is, PFA techniques 
that destroy the sample are used to investigate the root cause 
of the failure. The techniques cited on the far right side in 
Figure 1 all involve physically cutting, drilling or otherwise 
altering the sample in some way. If the fault is not properly 
located, there is no second chance to find it unless another 
package is sacrificed. 

Non-destructive 3D X-ray Imaging for
Advanced Packaging Failure Analysis  
Cheryl Hartfield 
Carl Zeiss Microscopy

Daniel Nuez
Xilinx, Inc.

Originally published in the September/October 2017 issue of Chip Scale Review

Figure 1  Acceptance of 3D X-ray microscopy is growing for failure analysis.
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Providing 3D intelligence ahead of 
destructive analysis is a key benefit of 
XRM. It enables higher success rates in 
cross-sectioning and finding root causes. 
Visualization of defects by 3D XRM can 
even eliminate the need to perform PFA, 
saving time and resources. The case 
study included in this article illustrates 
the effectiveness of 3D XRM in the 
FA workflow.

Visualizing defects 
non-destructively with 
virtual cross-sections
The power of 3D tomography comes 
from its ability to provide virtual cross 
sections, revealing the details inside 
structures. Figure 2 provides a simplified 
overview of the XRM tomography 
process. Figure 2a shows that data is 
acquired by collecting 2D projection 
images from a rotating sample positioned 
between an X-ray source and a detector 
(the yellow dot in Figure 2a). The XRM 
detector is composed of scintillator-
coupled optical microscope objectives 
combined with a charge-coupled device 
(CCD) camera. The X-rays pass through 
the sample and hit the scintillator 
mounted on the objective lens. The 
scintillator converts the pattern resulting 
from X-rays transmitted through the 
sample into the optical image captured 
on the right (Figure 2b). The sample is 
then rotated slightly, the image captured  
again, and this process is repeated 
through up to 360 degrees of rotation. 
The resulting group of projections – 
typically, between 1,000 and 2,000 – 
are then processed by algorithms to 
mathema-tically reconstruct the 3D 
volume (Figure 2c). 

The time required for the entire process 
is variable – typically ranging between 
30 minutes and 8 hours – depending 
on the number of projections and how 
much time is spent per projection. 
From the resulting 3D volume, one can 
view any number of horizontal or vertical 
cross sections through the sample 
(Figure 2d) – essentially, isolating any 
desired sliver of the 3D volume. Therefore, 
details of fault locations can be visualized 
without destroying the sample. 

As an example, Figure 2d shows a virtual 
cross-section of a 2.5D interposer stack.
The virtual cross-section plane can be 
moved interactively through the 3D 
dataset in any of the three orthogonal 
directions (x, y, z). This allows localization 
of defects to specific areas, such as the 
substrate-side or chip-side of a flip-chip 
bump, and aids understanding of the 
failure mechanism. Figure 3 provides 
another look at how a virtual cross 
section is obtained from the reconstructed 
3D dataset.

Figure 3  Using XRM, any plane through the 3D data may be viewed as a virtual cross section.

Figure 2  XRM 3D tomography yields highly informative visual information about failures, non-destructively.
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XRM vs. microCT
Micro-computed tomography, or microCT, is another approach 
to obtaining 3D images. However, as Figure 4 illustrates, XRM 
offers significant resolution advantages compared to microCT. 
To achieve high resolution in microCT systems, high-geometric 
magnification is required. This involves placing the sample very 
close to the source (Figure 4b) and moving the detector as far 
away as possible – this ratio determines the magnification and, 
thus, the resolution of the image. With microCT, large samples 
are challenging to image at high resolution. As samples become 
larger, they must be moved further away from the source so 
they can be rotated without colliding with it. As the sample 
is moved away, there is a linear reduction in the magnification, 
which, in turn, lowers the resolution (Figure 4b).

The advantage of XRM is that high-resolution images can be 
obtained from fully intact large samples that are positioned 
further away from the source (Figure 4a). The scintillator-coupled 

microscope objectives provide the magnification necessary to 
retain resolution versus depending upon geometric magnification 
alone. With XRM, resolution remains relatively independent of 
the package size, and high resolution can be maintained with 
large sample sizes. This capability represents the core value of 
XRM vs. microCT technology.

Increasing the success rates of PFA
The following case study demonstrates the benefits that 3D XRM 
offers to chipmakers. In this instance, a 2.5D interposer test chip 
with microbumps was used for packaging development and 
process optimization. In the center of Figure 5 is the package 
computer-aided design (CAD) layout, showing microbumps and 
larger C4 bumps. A short has been isolated to the spot depicted 
in the green box at left. At right is the 2D X-ray image – the three 
microbumps are visible inside the C4 bump, in the same orientation, 
but it is impossible to see where the short is actually located. 

Figure 4  XRM does not depend on geometric magnification to achieve high spatial resolution.
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The red dotted line in the middle image 
indicates the direction of the physical 
cut performed with PFA in an effort to 
visualize the short. As the orange line 
labeled “solder extrusion” shows – and 
as was later determined using XRM – 
the short from one microbump to another 
exists at an angle. XRM also revealed that  
the size and mass of the short was below 
the detection limits of the 2D X-ray system.

The failure analyst repeatedly cut and 
polished the sample to get as close as 
possible to the failure site. An anomaly in 
the form of solder extrusion was observed 
(see Figure 6) and suspected to be the 
cause of the short. An optical image is on 
the left, and a SEM image is on the right. 
Visual evidence of a short across adjacent 
bumps is missing in both optical and SEM 
images. The analyst continued to polish 
about 10 microns further, and as Figure 7 
shows, polished through evidence of 
the short. Although the electrical data 
pointed to the short’s general location, 
more precise information was needed 
to successfully confirm the short by 
destructive PFA.

3D XRM can reveal details of a solder 
bridge (location, size and orientation) 
prior to destructive analysis. This 
information can then guide and enable 
successful execution of a precise cut 
into the solder bridge. As Figure 7 shows 
(right image), there was evidence of 
solder extrusions in adjacent bumps. 
Before attacking the sample further with 
continued polishing, a defective area 
was imaged by 3D XRM using 
submicron voxels.

The 3D rendering in Figure 8 shows the 
exact location and orientation of the 
short, which guided the subsequent 
destructive cross-sectioning angle and 
resulted in a successful FA report.

Figure 6  The first cut using PFA revealed the solder extrusion, but not the bump-to-bump connection, 
requiring further cutting and polishing.

Figure 7  The second polish destroyed the physical evidence of a microbump short on pin BC14. Non-destructive 
3D XRM tomographic imaging was performed on adjacent bump BB15 due to evidence of solder extrusion in the
cross section’s optical image.

Figure 5  In a sample 2.5D interposer chip, an electrical failure was found at pin BC14, but 2D X-ray inspection
failed to show any structural anomaly.

BC14 BC14

GND GNDSolder
extrusion

UF crack UF crack

Failing BC14 µbumps.
Critical evidence was destroyed 

by the polishing! 

BB15 was sent to
non-destructive 3D X-ray 

analysis. 
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Summary
Package technology is growing in complexity and the FA workflow 
needs to adapt to the new requirements. Conventional FA involves 
cutting into samples and polishing the edge to the approximate 
location of the failure. Then SEM and/or optical micrographs 
are used to capture high-resolution 2D images in order to help 
determine the failure’s root cause. While valuable for some 
applications, this approach is destructive – it provides a single 
chance to choose the right cutting orientation that will expose 
the failure for imaging. Moreover, the process may introduce 
artifacts from cutting and polishing that can hinder root cause 
determination. Defects may be missed, leading the failure 

analyst to conclude that no defect could be found.
With its high-resolution and non-destructive properties, 
3D XRM imaging and analysis has become increasingly 
commonplace in FA workflows, particularly for advanced 
2.5D and 3D packaging architectures. By providing detailed 
3D images of failure locations, it is a valuable precursor to – 
and in some cases, can completely replace – physical 
cross-sectioning.

Failed Pin BC14 BB15

3D X-ray integrated FA  XRM clearly visualized the solder bridge defects   
   without cutting or downsizing the sample

Conventional FA  First cut revealed solder extrusion,  Further cross-section is possible,
  but evidence of solder bridging was not  guided by 3D XRM data
  obtained in further polishing due either to 
  removal of evidence or to analysis in the 
  wrong plane

High resolution 3D XRM was 
used to confirm the solder bridge 
defect at BB15

Figure 8  3D XRM data confirmed the defect with no destruction of the chip sample.

BB15
BB15
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Abstract
Non-destructive 3D X-ray microscopy (XRM) has played an 
important role in advances of semiconductor packaging 
development and failure analysis [1-3]. Over the past decade, the 
IC industry has increasingly focused on packaging innovations 
to improve device performance and cost-effectiveness. The 
emergence of novel 2.5D, 3D and recent heterogenous 
integration packages challenges the existing X-ray imaging 
and characterization workflows because I/O interconnects 
such as small-volume solders and hybrid Cu-to-Cu bonds are 
more miniaturized in densely packed packages. In this report, 
we will introduce a new scintillator material coupled with 
a 40X objective lens (referred as 40X-P), integrated in an XRM 
detector system, capable of delivering better spatial resolution 
and contrast than the traditional Cesium Iodide (referred as CsI) 
scintillator based X-ray detector. Several commercial semicon-
ductor packages will be imaged and analyzed with both the 
new 40X-P and a standard 40X objectives for comparison. 
We will also demonstrate that the data acquisition with 40X-P 
can be accelerated by a factor of four with a deep learning 
reconstruction method, improving its efficiency in failure 
analysis applications. 

Introduction
Semiconductor packaging technologies have been the driving 
force to propel advances of electronics device performance, 
while traditional silicon downscaling has been slowing down. 
The IC packaging industry faces a paradigm shift in design, 
manufacturing, and inspection techniques to adopt more than 
Moore packaging innovations. Among many newly emerged 
interconnection techniques, fine pitch interconnection, 3D 
stacking, and solderless hybrid bonding are particularly attractive 
for the advantage to increase I/O density with the bridged 
size gap between Si and package. However, the IC industry 
faces the challenge to find an effective non-destructive solution 
for imaging these relentlessly miniaturized interconnects 
and defects. 

A Breakthrough in Resolution and Scan Speed: 
Overcome the Challenges of 3D X-ray Imaging 
Workflows for Electronics Package Failure 
Analysis  
Allen Gu, Gerhard Krampert, Susan Candell, Masako Terada, 
Carl Zeiss Research Microscopy Solutions, 5300 Central Parkway, Dublin, CA  94568, USA

Thomas Rodgers
Carl Zeiss Microscopy GmbH, Rudolf Eber Str. 2, BG 41/1, 73447 Oberkochen, Germany

3D XRM has become the preferred solution for semiconductor 
package failure analysis because of its non-destructive and 
high resolution capabilities. Unlike conventional computed 
tomography techniques, where spatial resolution solely relies 
on geometric magnification, XRM utilizes a unique two-stage 
magnification mechanism to achieve high resolution over large 
working distances. With both geometric and optical magnification, 
XRM enables submicron resolution across the normal range of 
semiconductor package sizes. XRM system resolution and 
contrast are defined by a variety of contributing factors such 
as source, detector, scan conditions, etc. In this paper, we focus 
on both the resolution and contrast improvement enabled by 
a new scintillator material coupled with a 40X objective lens. 
It is capable of delivering significantly better spatial resolution 
and contrast over a broader range of X-ray energies than the 
traditional CsI scintillator based detector. This is achieved via 
the higher density (i.e., higher average z-number) of the new 
scintillator material compared to CsI. Because of the heavy 
atom compositions, it converts high-energy X-ray photons 
to visible light better than the traditional CsI, making it better 
resolution and contrast even at high energies.  

The first test vehicle was a commercially purchased 9x14x1.1 mm 
DRAM memory package with four layers of microbump and TSV 
stacks. The second test vehicle is a commercial 22x26x1 mm 
embedded multi-die interconnect bridge (EMIB) package with 
a heterogeneously integrated high-bandwidth memory and a 
graphics processor. We will demonstrate that the new 40X-P 
delivers better 2D and 3D resolutions and contrast of X-ray 
microscopic images on these test vehicles. In the previous 
studies, we reported the deep learning based reconstruction 
method can be used to speed up the scan throughput by a 
factor of four [4-6]. Here, we apply the reconstruction workflow 
to reduce the scan time of the 3D data acquired with the 
40X-P objective.  

Original Published at 2023 IEEE International Symposium on the Physicaland Failure Analysis
of Integrated Circuits (IPFA)
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Instrumentation and Setups
In a typical data acquisition with XRM, 
a sample rotates by 180 (± fan angle) 
or 360 degrees, and a set of projection 
images are acquired by an X-ray detector 
system. A scintillator screen coupled with 
an optical objective is utilized to convert 
X-ray photons to visible light, and the 
magnified projection images are captured 
by a CCD camera. These 2D images are 
mathematically reconstructed to 3D data. 
For the comparative studies, both 40X-P 
and standard 40X objective lenses were 
installed on a same turret for all imaging 
work. The standard procedures of beam 
alignment and objective calibration were 
followed.  

Figure 1 shows the example 2D projections 
on a standard resolution target obtained 
with a standard 40X (Figure 1a) and the 
40X-P (Figure 1b) objectives at 120 kV 
and a LE6 X-ray filter. Because of the 
superior performance at high energies of 
the new 40X-P, 500 nm spatial resolution 
was achieved. The measured modular 
transfer function of 40X-P only drops off 
at highest levels of resolution, indicating 
that the new objective maintains superior 
contrast in the high spatial frequency 
range. Although the peak performances 
of both objectives are achieved at a 
low energy, high energy performance 
is more critical in imaging high-density 
IC packages.  

Results and Discussions
Because each projection contributes to 
the image quality of a reconstructed 
volume, it is important to optimize 2D 
X-ray projection views prior to 3D data 
acquisition. Figure 2 shows the two 
projection images on a commercially 
purchased DRAM package, which was 
not trimmed or prepared in the imaging 
work. Both images were acquired at 70 kV 
with a LE2 source filter at 0.49 µm/pixel 
resolution for a comparison. 

However, imaging small interconnects 
and internal defects of these packages 
has been challenging because of resolution 
limitations in microCT and XRM systems. 
Prior to the 40X objective tests, we used 
low-magnification objectives of 0.4X and 
4X to precisely localize the scan region 
(Figure 3a) for the data acquisition with 
40X objectives. With the X-ray imaging 
parameters in Figure 2, the sample was 
scanned with both 40X objectives. 

The image acquired by the 40X-P objective 
in Fig. 2b looked much crispier than the 
image with a standard 40X objective in 
Figure 2a, especially on the edges of Cu 
pillars and microbumps. DRAM packaging 
architectures have utilized a small-volume 
soldering technique to stack multiple layers 
of dies through a thermocompression 
bonding process. The bond linethickness 
of ~15 µm and TSV with a diameter 
of 5 µm have been seen in advanced 
DRAM packages. 

Figure 1  Resolution and contrast performance comparison. A) A 2D projection view with a standard 40X 
objective lens at 120 kV X-ray energy and a LE6 filter. B) 2D projection view with the 40X-P at the same energy 
and filter. The test sample was a ZEISS standard resolution target. 

Figure 2  Resolution performance comparison of 2D projections on the DRAM package sample. 
A) with a standard 40X objective lens at 70 kV and a LE2 filter. B) with the 40X-P at the same energy and filter. 
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Figure 3c is a virtual cross-section image 
of TSVs and microbumps acquired with 
the 40X-P objective, clearly showing the 
resolution and contrast improvement over 
the image with a standard 40X objective  
(Figure 3b). Furthermore, the voids in 
microbump solders appeared much better 
defined than the image of the voids 
acquired by the standard 40X. The material 
phase separation can be clearly seen on the 
planar view acquired by 40X-P objective 
in Figure 3e, while the same virtual slice 
shows a blurry image on the phase  
separation in Figure 3d.    

We reported a lab-based nanoscale  
tomographic technique to explore the 
applications of imaging semiconductor 
packages and back-end-of-line (BEOL) 
structures [7-8]. About 100 nm features can 
be effectively visualized, but the technique 
requires a significant sample preparation. 
Because the non-destructivity is highly 
valuated in failure analysis applications, 
we studied the 40X-P performance to 
image BEOL structures of an EMIB packa-
ge, which are not among typical regions 
of interest with XRM. Figure 4b shows 
more promising resolution and contrast 
performance with the 40X-P objective, 
compared with the image performance 
by a standard 40X (Figure 4a). The metal 
lines and small submicron features are 
clearly resolved with greater certainty with 
the 40X-P objective than a standard 40X.  

Figure 3  A comparative study of the 40X-P objective to a standard 40X objective on the DRAM package 
sample. Two 3D tomographies with 40X objective were acquired at 0.49 µm/voxel. A) step-by-step zooming 
in scans with low mangification objectives of 0.4X and 4X, B) a cross-section view of the reconstructed 
volume acquired with a standard 40X objective, C) the corresponding cross-section with the 40X-P objective, 
D) a planar view of the reconstructed volume acquired with the standard 40X, and E) the corresponding 
planar view with the 40X-P objective.      

Figure 4  Resolution and contrast performance comparison of the 40X-P objective with a standard 40X objective on the DRAM package sample. The tomography was 
acquired at 0.49 µm/vox resolution. A) a planar virtual slice of the reconstructed volume acquired with a standard 40X objective, B) the corresponding view with the 
40X-P objective.      
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EMIB packaging technique utilizes a 
small Si bridge to connect multiple dies. 
It is an alternative technique to 2.5D Si 
interposer packaging for its benefits on 
die placement flexibility and free of TSV 
process. An EMIB package was purchased 
through a commercial channel and the 
sample was not trimmed or prepared in 
the imaging work. Figure 5a shows the 
sample photo. A scan with 4X objective 
at 0.73 µm/vox resolution was performed 
to precisely localize a micro-bump region 
for the following 40X scans (Figure 5b). 
Figure 5c-f shows the 3D microscopic 
images acquired at 0.32 µm/voxel 
resolution with both 40X objective lenses. 
The virtual slice of the data acquired with 
the 40X-P objective shows the better 
resolution and contrast of the solder voids 
(Figure 5d) than with a standard 40X 
objective in Figure 5c. Even the smaller 
BOEL structures were resolved more 
clearly in the image acquired with the 
40X-P objective. The example planar view 
in Figure 5f revealed the surface detail 
of metal traces, indicating the image 
obtained by the 40X-P objective delivers 
better resolution and contrast than the 
standard 40X objective. 

To demonstrate that this new 40X-P 
detector can be efficiently used in X-ray 
failure analysis workflow, we utilized the 
deep learning reconstruction method 
reported previously [4-6] to improve the 
scan throughput while maintain the 
image quality. The standard Feldkamp-
Davis-Kress (FDK) reconstruction provides 
accurate and fast reconstruction, but 
it is sensitive to photon starvation and 
resulting images are prone to noise and 
under-sampling artifacts. For example, 
a typical data acquisition with a 40X 
objective lens requires an overnight scan 
with the FDK reconstruction for high 
image quality. In a 3.5 hour scan with the 
40X-P objective and FDK reconstruction, 
the detail of microbump and BOEL 
structures has not been clearly revealed 
due to high noise level (Figure 6a). 

Figure 5  A comparison of the 40X-P objective to a standard 40X objective on the EMIB package sample.  
The images were acquired with both 40X objectives at 0.32 µm/vox resolution. A) photo of the sample,  
B) the image was acquired with 4X at 0.73 µm/vox for localizing 40X scans, C) a cross-section view of the 
reconstructed volume acquired with a standard 40X objective, D) the corresponding cross-section view with 
the 40X-P objective, E) a planar view of the reconstructed volume acquired with a standard 40X, and 
F) the corresponding cross-section view with the 40X-P objective.      

Figure 6  A comparative study of the deep learning reconstruction result to the standard FDK reconstruction. 
The tomography was acquired at 0.32 µm/vox resolution with the 40X-P objective. A) a virtual slice from a 
3.5 hour scan with the standard FDK reconstruction. B) the same virtual slice from a 3.5 hour scan with the 
deep learning reconstruction method.         
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By contrast, the 3.5 hour scan with the deep learning 
reconstruction clearly shows the improved image quality 
with the same scan time (Figure 6b). The result shows that 
the new 40X-P detector can be efficiently used for failure 
analysis workflows with unparalleled resolution and contrast. 

Conclusion
The impacts of innovative packaging technologies have 
been seen across advanced semiconductor packages. The 
failure analysis community always carves for more effective 
and efficient non-destructive solutions for solving root cause 
analysis challenges in these complex packages. We demonstrated 
the breakthrough in resolution and contrast is enabled with 
a new scintillator material based X-ray detector in XRM. 
Because of its superior performance at higher energies over 
the traditional CsI scintillator based detector, it can be used 
in imaging high-density semiconductor packages. With the 
deep learning reconstruction workflow, the scan speed 
can be improved while maintaining the unprecedented 
resolution and contrast.
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Abstract
Over the past decade, 3D X-ray has played a critical role in 
semiconductor package failure analysis (FA), primarily owing to 
its non-destructive nature and high resolution capability [1,2]. 
As novel complex IC packages soar in recent years [3,4], X-ray 
failure analysis faces increasing challenges in imaging new 
advanced packages because IC interconnects are more densely 
packed in larger platforms. It takes several hours to overnight 
to image fault regions at high resolution or crucial details of a 
defect remain undetected. A high-productivity X-ray solution 
is required to substantially speed up data acquisition while 
maintaining image quality. In this paper, we propose a new 
deep learning high-resolution reconstruction (DLHRR) method, 
capable of speeding up data acquisition by at least a factor of 
four through the implementation of pre-trained neural networks. 
We will demonstrate that DLHRR extracts signals from low-dose 
data more efficiently than the conventional Feldkamp-Davis-Kress 
(FDK) method, which is sensitive to noise and prone to the 
aliasing image artifacts. Several semiconductor packages 
and a commercial smartwatch battery module will be analyzed 
using the proposed technique. Up to 10x scan throughput 
improvement was demonstrated on a commercial IC package. 
Without the need of any additional X-ray beam-line hardware, 
the proposed method can provide a viable and affordable 
solution to turbocharge X-ray failure analysis.    

Introduction
As the era of transistor scaling driven technology is coming to 
an end in the semiconductor industry, packaging innovation  
strives to continuously improve the performance and reliability 
of electronics products. The trend of 3D packaging and 
heterogenous integration has presented increasing challenges 
to existing FA techniques because of more complex multichip 
architectures and more miniaturized interconnects. The 3D X-ray 
workflow is known for enhancing FA success rates by its non-
destructive and high-resolution imaging capabilities. However, 
its applications to advanced packages have become less effective 
due to increasing package complexity and density, together with 
the surging demand for non-destructive X-ray inspection. 

Accelerate Your 3D X-ray Failure Analysis by 
Deep Learning High Resolution Reconstruction
Allen Gu, Andriy Andreyev, Masako Terada 
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Yanjing Yang 
Carl Zeiss X-ray Microscopy Applications, 50 Kaki Bukit Place, Singapore 415926

A faster X-ray solution is required to substantially enhance the 
imaging efficiency so that the user does not have to compromise 
image quality and scan throughput in high resolution imaging.   

Computed tomography (CT) image reconstruction, a necessary 
step in any 3D X-ray workflow, converts 2D projection images 
to a 3D volume. Most commercial CT systems utilize the 
traditional FDK algorithm for reconstruction. It can generate 
good quality images in a fast and reliable reconstruction process. 
In addition, it does not require as high computing power as 
other reconstruction methods such as iterative reconstruction. 
The FDK method, however, is sensitive to photon starvation 
and resulting images are prone to a variety of under-sampling 
artifacts. Consequently, a high number of projections, and/or 
long exposure time per projection are required for reducing 
image noise and artifacts. Long scans are necessary for high 
quality data acquisition. In this work, we will introduce and 
evaluate a new deep learning-based reconstruction method 
to overcome this hurdle. 

 

Figure 1  Schematics of the architecture of the proposed DLHRR method 
a) and its performance advantage over the conventional FDK method b). 
With the same low number of projections, DLHRR generates higher quality 
images than the conventional FDK method.  

Originally Published at ISTFA 2021: Proceedings from the 47th International Symposium 
for Testing and Failure Analysis Conference
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Deep Learning High-resolution Reconstruction  
Deep learning based convolutional neural networks have shown 
excellent performance in numerous computer vision tasks such 
as recognition, segmentation, resolution improvement, and 
denoising [5-8]. However, the reported methods are not directly 
useful to X-ray microscopy, where an actual 3D image has to 
be reconstructed from a set of 2D X-ray projections, in which 
the corrections for source spectrum, photon statistics, sample 
drifts and X-ray scattering are required to maintain the highest 
image resolution and quality. 

The new convolutional neural network method is based on 
the “noise2noise” model and approach [9] with the ZEISS 
proprietary cost function and training data preparation 
protocol available under ZEISS DeepRecon Pro. The network 
proposed and evaluated in this work (Fig. 1) is more suitable 
for high-resolution image reconstruction, because it addresses 
image quality degradation in the scenario of low pixel counts 
or insufficient number of projections [10]. The training input 
is a set of low number of projections with high-noise pixels, 
and the training target is an image created from a high 
number of projections with low-noise pixels, which serves 
as the “ground truth” data.  

The training of the network is done in a manner that it is 
applicable to the desired X-ray microscope data acquisition 
settings and a given sample class. The model will need to be 
retrained if such parameters change. However, the network is 
quite lightweight and can be re-trained within 3 hours on a 
relatively mid-range professional workstation (Dell Precision 
7920) utilizing two professional GPUs totaling 48 GB of video 
RAM. Once the network is trained, it can be applied to all 
the tomographic data that belongs to the same class and the 
reconstruction itself takes less than 5 minutes for a 10003 voxels 
image volume. We intentionally minimized the number of 
parameters to be optimized to just one that controls the noise 
level dictated by the desired total acquisition scan time. It works 
especially well when the imaging task consists of several samples 
or ROIs that need to be imaged in the same or similar manner, 
since every subsequent sample/ROI does not require retraining 
of the network. Given the simplicity of the training process and 
the comparatively short training duration that is of the same 
order of magnitude as iterative reconstruction, we foresee 
that DLHRR will be used on unique samples as well. 

Since the applicability of the network is narrowed to a strict 
sample class and acquisition conditions, the network can 
be trained on as little as one tomography. There are also no 
strict requirements towards the training data, other than the 
sample needing to be well represented with all characteristic 
features in the field-of-view. It is worth noting that even 
a single tomographic acquisition is three dimensional in 
nature, containing hundreds or thousands of 2D images. 

This provides the network with enough training data. Furthermore, 
the training data are augmented during the training process to 
account for potential variations in sample and data acquisition 
conditions. Overall, the images reconstructed by the DLHRR 
method routinely result in better quality than the FDK-reconstructed 
images, in which the critical structural information is frequently 
lost due to the under-sampling noise and artifacts.   

Results 
In our first case study, 3D X-ray data was acquired at 0.7 µm/vox 
resolution on a 50x50 mm AMD HBM-µbump 2.5D package
(Fig. 2a). The fault region was µbump joint cracks at the 
high-bandwidth memory stack and interposer interface, as 
shown in Fig. 2b. It is a 3D color-rendering image. With a typical 
setting of FDK reconstruction, 1,600 projections were acquired 
in a 9.6 hour tomography, revealing ~ 1 µm thick bump cracks 
(Fig. 2c-d). The DLHRR slices in Fig. 2e-f) showed very similar 
image quality on the corresponding cracks with only 400 
projections for a 2.4 hour scan. This case demonstrated that 
DLHRR successfully learned to differentiate signal and noise 
from the training data, achieving equivalent image quality 
without losing the visibility of the small features in a scan 
4x faster than FDK.   

 

Figure 2  Comparison of the DLHRR results to FDK on a 50x50 mm AMD HBM-µbump 
package. a) sample, b) a 3D color-rendering image at 0.72 µm/vox resolution, 
c-d) virtual cross-section slices from the FDK 9.6 hour scan, e-f) virtual slices from 
the DLHRR 2.4 hour scan. c) and e) are the top-down views, and d) and f) are the 
cross-sectional views.
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In the second case study, X-ray scans were obtained at 
1.5 µm/vox resolution on a commercial 10x10 mm smartphone 
A8 package. Both FDK and DLHRR reconstruction methods 
were performed for comparison. Since there were no known 
electrical open or short failures in the test sample, we focused 
on solder ball and via voids, a common defect in IC packages. 
Fig. 3a) shows an example slice from the 6 hour scan reconstructed 
by FDK. The image quality is acceptable with this long scan. 
As the X-ray dose decreased by a factor of ten, the traditional 
FDK method showed its inefficiency to extract signal from the 
0.6 hour scan (data not shown). By contrast, the slice from the 
same short scan but reconstructed by DLHRR maintained the 
high image quality – no image detail was lost (Fig. 3b). 
       

 

Figure 3  A comparison of the virtual slices extracted from a) the FDK 6 hour scan, 
b) the DLHRR 0.6 hour scan at 1.5 µm/voxel resolution on a smartphone A8 package. 

Analysis time is critical in semiconductor package reliability 
testing because package structures may alter over the test 
cycles. To understand throughput improvement for 3D X-ray 
application in reliability testing, we acquired data on a 2.5D 
interposer package tested by using the JEDEC thermal cycle 
standard (Fig. 4a). The 4 hour and 1 hour scan results at 
0.7 µm/vox were reconstructed by both DLHRR and FDK 
methods for comparison. Fig.4b is the 3D color-rendering 
image from the FDK 4 hour scan, showing the defective bumps 
at the corner of the package. The virtual cross-sectional slice 
from FDK 4 hour (Fig. 4c) and DLHRR 1 hour (Fig. 4d) scans 
resulted in very comparable image quality, clearly visualizing 
~ 2 µm cracks at C4 bumps, the byproduct of the thermal cycle. 
With the high-level noise in the FDK 1 hour data (not shown), 
the crack information may be misinterpreted. This case 
demonstrated that the DLHRR method was effective to 
reduce the scan time by a factor of four, compared with 
the standard FKD reconstruction.  

Figure 4  DLHRR results used in the reliability study of a 50x75 mm 2.5D interposer 
package. a) sample, b) a 3D color-rendering image for the defective corner of the
package, acquired at 0.7 µm/vox, c) a reconstructed slice by the FDK 4 hour scan, 
d) a reconstructed slice by the DLHRR 1 hour scan. The insets in c-d) are the digitally 
zoomed-in images on the cracked bump. 

3D X-ray imaging and analysis are important in quality inspection 
and longevity study of lithium-ion batteries. A high-resolution 
interior tomography on a battery sample can take ~24 hours with 
the traditional FDK reconstruction. To test the scan throughput 
improvement by the new DLHRR method, we acquired 3D X-ray 
data on a commercial smartwatch battery module, which were 
later reconstructed by these two methods for a comparative 
study (Fig. 5). The baseline data from the FDK 24 hour scan are 
shown in Fig. 5a-b). When reducing the number of projections 
by a factor of four (Fig. 5c), the FDK slice showed a high level of 
noise, which shadowed the visibility of the polymer separator, 
a key structure relevant to battery performance. The low data 
quality resulted from under-sampling noise and artifacts in the 
FDK reconstruction, which would make it difficult for subsequent 
segmentation and quantification. By contrast, the DLHRR slice 
(Fig. 5d) showed clear particle boundary definitions even at 
the reduced scan time at 6 hours. It was found that the contrast-
to-noise ratio from the DLHRR 6 hour scan is even higher than 
the FDK 24 hour scan. This case further demonstrated the 
effectiveness of the new DLHRR reconstruction method to 
reduce the data acquisition time by a factor of four. 

a bFDK – 6 hours DLHRR – 0.6 hours

c dFDK – 4 hours DLHRR – 1 hour

a b
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Figure 5  A comparative study of the DLHRR results to FDK on a commercial  
smartwatch battery module. The tomography was acquired at 0.53 µm/vox  
resolution. a) a 3D color-rendering image from the FKDK 24 hour scan,  
b) a virtual slice from the FKD 24 hour scan, c) a virtual slice from the  
FDK 6 hour scan, d) a virtual slice from the DLHRR 6 hour scan.        

So far we have demonstrated that the DLHRR method can be 
used for reducing scan time significantly on several cases. It can 
also be used for improving image quality in a same scan time 
setting. 3D X-ray data were acquired at 1 µm/vox resolution on 
a commercial 4-High DRAM package (Fig. 6). The sample was 
chosen because it has about 2 µm thin metal lines on the top 
of dies, a good target for image quality assessment. With FDK 
reconstruction, 400 projections were acquired in a 30 minute 
tomography. The resulting top-down view and cross-sectional 
views are showed in Fig. 6 a-b. The metal lines however were 
largely smeared due to the high level of noise generated by 
the traditional reconstruction method in the low X-ray dose 
tomographic scan (Fig. 6b). The small structure may be 
overlooked due to the low image quality. Longer scans are 
generally required to retain this small feature. With the DLHRR 
method, the visibility of the same metal lines was largely 
enhanced (Fig. 6d) even in the short scan data. During the 
network training process, the machine has learned to recognize 
the small feature and the surrounding noise. Compared with 
the high level of noise in Fig. 6a, the DLHRR results show higher 
contrast-to-noise ratio in the top-down view (Fig. 6c). This case 
demonstrated the effectiveness of the new DLHRR reconstruction 
method to improve image quality in the same scan time, especially 
for short scans. As modern advanced packages become more 
complex, defects and failures are more difficult to image and 
characterize. Highest image quality with shortest scan time 
is always preferred in 3D X-ray failure analysis workflows to 
enhance the success rate of root cause analyses.         

Figure 6  With the same scan time, the DLHRR results in c-d) show superior image 
quality over the FDK results in a-b). The data was acquired on a commercial 
µbump-TSV DRAM sample at 1 µm/vox resolution. The blue arrow in d) shows an 
enhanced contrast-to-noise ratio on the metal lines, which were smeared in the 
FDK result. a) and c) are top-down views. b) and d) are cross-sectional views.   

3D volume stitching plays an important role in FA fault isolation, 
intellectual property intelligence and reverse engineering appli-
cations. The benefit is to achieve higher resolution for a field of 
view (FOV) through multiple-volume stitching, overcoming the 
detector size limitation. However, the total scan time is long 
because of the multi-volume data acquisition. The DLHRR 
method can elevate the scan efficiency without losing image 
quality because the time reduction for a single volume scan can 
be applied to other volumes without the need of an additional 
network training. The test sample was the entire accelerator/
gyroscope package, as indicated by the red box in Fig. 7a, of a 
commercial smartphone mother board. We acquired 3x3 volumes 
with 1.6 µm/voxel resolution for each volume. With a typical FDK 
reconstruction setting, it took 100 minutes for each volume. 
The nine volumes took the total of 900 minutes and the stitched 
data are shown in Fig. 7 b-c. With the DLHRR reconstruction 
method, only 25 minutes per scan was required. As shown in 
Fig. 7e, the 25 minutes scan and DLHRR reconstruction generated 
excellent image quality. By contrast, the result from a 25 minutes 
scan and FDK reconstruction showed a high level of noise and 
rich streak artifacts (Fig. 7d), which may cause a failure of stitching. 
The visibility of the Si structure was overshadowed by the noise. 
In this case, the DLHRR method succeeded to reduce the total 
scan time to 225 minutes in the data acquisition of all the 
stitched volumes, which requires 900 minutes scan with the 
traditional FDK method. The trained network model based 
on the center volume was successfully applied on all other 
volumes. We demonstrated that the DLHRR can be used to 
improve the image resolution over larger FOVs through more 
efficient multiple-volume data acquisition and stitching.   
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Conclusion 
The impacts of artificial intelligence technology have been 
seen across most industrial segments and commercial services 
such as transportation, healthcare, education, on-line shopping, 
finance and many more. This technological development provides 
a golden opportunity for the electronics failure analysis society to 
enable capability improvement and revolution. In this report, we 
demonstrated a deep learning based high-resolution reconstruc-
tion  
technique which can be used to substantially shorten X-ray failure 
analysis workflows. The throughput improvement by a factor of 
four or ten was demonstrated for several semiconductor package 
examples. Since the network can be trained on as little as one 
tomography dataset, its application range is limited to the sample 
class and acquisition condition specified by that training dataset. 
Network applicability to broad sample classes can be improved 
with further development. It is also possible to extend 3D X-ray 
applications to other high-productivity areas such as fault 
screening and isolation, package construction analysis, 
and even in-line inspection and metrology.    

Figure 7  DLHRR was used in a test of multiple volumes stitching. a) an accelerator/ 
gyroscope package in a commercial smartphone motherboard. b) 3x3 stitched 
volumes. c) a virtual cross-section of the stitched volume from the FDK reconstruction. 
d) a virtual slice from the FDK 25 minute scan. e) a corresponding slice from the 
DLHRR 25 minute scan. Both scans were acquired at 1.6 µm/voxel resolution.    
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Abstract
3D X-ray imaging plays an important role in package level 
failure analysis. Like most other microscopies, X-ray microscopes 
(XRM) generally have field of view (FOV) limits for high-resolution 
imaging. As precise fault isolation becomes more challenging 
in large and complex IC packages, acquiring numerous 
high-resolution images to search for defects in a large FOV 
is required. For example, if a suspect fault region is 785 mm3 
in a cylinder with 10 mm in diameter and 10mm in height, 
more than 125 high-resolution scans with 6.28 mm3 each are 
required to cover the volume. This significantly diminishes 
XRM imaging throughput. In this report, we propose a new 
deep learning reconstruction method to address the issue of 
achieving high-resolution at large FOVs. This AI powered 
technique and workflow can be used to restore the resolution 
from a large FOV scan.         

Introduction 
3D XRM imaging technique has been widely adopted 
to failure analysis and characterization of electronics systems 
and packages. With its non-destructive and high resolution 
imaging capability, deeply buried defects can be visualized 
prior to physical failure analysis (PFA). The X-ray microscopic 
technique, however, faces a challenge in imaging new IC 
packages where more densely packed interconnects are 
built in larger platforms. Because of the difficulty to 
pinpoint defect locations, it is often required to scan a 
large FOV with high resolution and speed, leading to 
the time-consuming and sometimes impractical X-ray 
imaging process.  

In this paper, we introduce a novel deep learning based 
recon-struction method, capable of learning the point 
spread function (PSF) of low resolution data by training on 
a pair of high and low resolution data. By operationalizing 
the trained network model, low resolution data is transformed 
to high resolution data through an inference process. 

A Deep Learning Reconstruction Technique 
and Workflow to Enhance 3D X-ray Imaging 
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Failure Analysis  
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We will demonstrate onseveral IC packages that the proposed 
workflow can be utilized in fault isolation for a large area, 
in which standard XRM has not been practically possible due 
to the trade-off of image resolution and FOV, a fundamental 
limit for most microscopes.  

Method
A conventional approach to improve image sharpness is to 
deconvolve the estimated PSF of the imaging system from actual 
tomographic images, e.g. using Richardson-Lucy deconvolution [1-2]. 
However, the accurate derivation of PSF requires the analytical 
modelling of data acquisition geometry, which may not reflect 
actual measurement conditions of a given sample. Additionally, 
the deconvolution process is computationally expensive, often 
leading to high levels of noise and artefacts. In this paper, we 
propose a novel approach to recover image resolution where 
the deconvolution step is replaced with applying a convolutional 
neural network trained specifically on the spatially registered 
low-to-high resolution feature map (Figure 1). The workflow 
starts with a spatial registration of multi-resolution data pair 
acquired for a sample. 

Original Published at 2023 International Conference on Electronics Packaging (ICEP)

Figure 1  Schematics of deep learning reconstruction method to restore image 
resolution from the low-resolution image input. 
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A network is then trained to remove the PSF effects at the 
low-resolution data. The recovery of image sharpness and 
removal of the uncorrelated image noise and artefacts are 
achieved because the network effectively learns the coupled 
effects of a finite PSF and partial volume artifacts. 

In our first case study, a smartphone board with an A12 
bionic System on Chip (SoC) package was commercially 
purchased (Figure 2). The sample was tested under a JEDEC 
reliability test standard with 1,000 temperature cycles to 
create solder cracks. In the second case study, an A14 SoC 
package was acquired through a commercial channel. 
We focused the deep learning reconstruction study on 
the small redistribution layers and PCB metal traces. Training 
data pairs can be easily obtained with an XRM instrument 
because it is capable of acquiring multi-level resolution data. 

Results and Discussions 
The low-resolution data at 10 µm/voxel (Figure 2b-c) and the 
high-resolution data at 2.1 µm/voxel were acquired within 
the volume of the low-resolution data (Figure 2b). First, these 
two datasets were spatially registered by using the reported 
methods [3-4] with 9-degree freedom to absorb small offsets 
resulting from imperfect machine alignments and possible 
sample drifts. Second, the resolution recovery network was 
trained using the modified image-to-image regression 
techniques [5-6] with loss functions, network structures and 
data augmentations tailored to the 3D tomographies. Finally, 
as a network model training is complete, the inference step 
was performed across the entire LFOV image or specific 
regions of interest, resulting in the recovered high-resolution 
image (Figure 2d). 
 
Figure 2d shows the example slice of the restored image. 
In contrast to the original low-resolution image in Figure 2c, 
the deep learning recovered image reveals more details of the 
bump cracks, while the same defect looked more ambiguous 
and less conclusive in Figure 2c because of the resolution 
limit.  Additionally, the beam hardening artifacts associated 
with the wire bonding are significantly reduced in the deep 
learning recovered image. The volume of the original low-
resolution image is ~14,130 mm3 and the volume of the 
high-resolution image is ~131 mm3. The calculated volume 
gain is 108, the minimum number of scans without 
considering the overlapping regions would be required 
to achieve the volume and resolution of the deep learning 
recovered image. 

A pair of low-resolution and high-resolution data was 
acquired with a 4X objective lens at 4.5 µm/voxel and 
1.5 µm/voxel respectively. The deep learning network was 
generated through training these two data. The reconstructed 
slice in Figure 3b shows the image recovered by the deep 
learning reconstruction, revealing more microscopic details 
on the redistribution layers and PCB metal traces, compared 
with the original low-resolution scan in Figure 3a. This 
example demonstrates that the deep learning reconstruction 
can work on the data with small structures.  

Figure 2  A) A12 SoC package test vehicle; B) 3D color-rendered image of the 
low-resolution scan; C) a virtual cross-section of the acquired low-resolution image; 
D) the same virtual slice from the low-resolution scan but restored with the deep 
learning reconstruction method. 
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Conclusions
As new package architectures trend towards increased 
3D packaging and heterogenous integration, the traditional 
fault isolation techniques, such as acoustic microscopy, 
lock-in thermography, and time delay reflectometry, become 
less effective to localize the true fault regions. The deep 
learning powered X-ray imaging technique proposed here can 
extend to fault isolation applications, which are traditionally 
impractical, because it can be used to recover the resolution 
of a large volume.        

Figure 3  A) the low-resolution image at 4.5 µm/voxel; B) the image recovered by 
the deep learning reconstruction.      

200 µm

200 µm

C

D

mailto:micro%40zeiss.com?subject=Axio%20Zoom.V16%20Materials

