Your FIB-SEMs for Nanotomography and Nanofabrication
Your FIB-SEM for High Throughput
3D Analysis and Sample Preparation

ZEISS Crossbeam Family

最先端の発見、容易な設計

高解像度電界放出型走査電子顕微鏡(FE-SEM)のイメージングと解析性能を、次世代集束イオンビーム(FIB)の処理能力と組み合わせたもZEISS Crossbeam。学術機関や産業研究所といった、複数のユーザーが利用するような機関で働く方々にもお役に立ちます。Crossbeamのモジュラープラットフォームコンセプトを利用して、既存のシステムを必要に応じてアップグレードできます。ミリング、イメージング、あるいは3D分析を実施する上で、CrossbeamによってFIBを利用する際の処理が迅速になります。

Learn in this video how the TEM lamella preparation workflow of ZEISS Crossbeam enables Benedikt Müller, University of Tuebingen, and Claus Burkhardt, NMI Reutlingen, to investigate the crystal structure of NanoSQUIDS.

  • Gemini電子工学を利用した高解像度SEM画像から、正しい試料情報を取得します。
  • イオンスカルプタFIBカラムに 新たなFIB処理法を導入しています。試料へのダメージを最低限に抑えることで試料加工面の質を最大に高めると同時に、実験を迅速化します。
  • TEM試料の準備にはイオンスカルプタFIBの低電圧性能を利用します。アモルファス化のダメージを最低限に抑えつつ極薄の試料が得られます。
  • ZEISS Crossbeamシリーズに最も期待されている評価プロセスでは、低真空モードの観察機能を備えるCrossbeam 340を活用するか、高分解能観察が可能なCrossbeam 550をご利用ください。大型サイズのチャンバーを選択することで、さらにオプションの拡張性が広がります。

Advantages in FIB-SEM

ZEISS Crossbeam with Gemini Optics

SEM観察能力が大幅に改善

低加速電圧におけるSEM分解能が最大30%改善

  • 2D高感度表面画像または3Dトモグラフィーデータの取得には、ZEISS CrossbeamのSEM性能が有用です。
  • 加速電圧が非常に低い場合において、高分解能且つ、高輝度、高いSN比での観察が可能です。
  • 複数の検出器で試料を総合的に評価します。純粋な組成コントラストを、ZEISS独自のInlens EsB検出器で取得できます。
  • 帯電による影響を受けずに、非導電性試料の観察ができます。
SEM Performance
Close
Focused Ion Beam Column of ZEISS Crossbeam

ハイスループットFIB加工が実現

インテリジェントFIBミリングストラテジーの導入により、材料加工スピードが最大40%UP

  • 新たなFIB処理法のため、ガリウムFIBカラムイオンスカルプターが搭載されました。
  • FIBによるダメージを最小限に抑えることにより高品質な試料が得られ、それと同時に実験が迅速になります。
  • FIB解像度を妥協することなく、最大で100 nA電流を用いて正確で迅速な試料加工ができます。
  • 材料加工においてインテリジェントFIBスキャニングストラテジーの速度と精度が効果的に作用し、実験の速度が従来に比べ最大40%上がります。
Ion-sculptor FIB
Close
EDS Analytics in 3D with ZEISS Crossbeam

FIB-SEM 分析で3D解像度を体験

EDS とEBSD解析を統合した3D解析による利便性を体験ください。

  • ZEISS CrossbeamとAtlas 5により、迅速で正確なトモグラフィー解析の可能性が広がります。
  • ZEISS Atlas 5の統合3D解析モジュールで、SEMトモグラフィーの最中にEDSとEBSD解析を実行することが可能です。
  • FIB-SEMトモグラフィーおいて、優れた等方性ボクセルサイズが3D分解能を実現。また、Inlens EsB検出器を用いて、試料表面深さ3nm未満からの高感度表面、組成コントラスト画像が取得可能になります。
  • トモグラフィー解析時に加工厚みのモニタリングと画像の最適化を自動で行うことができます。
Expand Your Crossbeam
Close
Array of TEM lamella fabricated with automated preparation. Crossbeam 550.

The Workflow for TEM Lamella Preparation

Just do it with high quality at high throughput

ZEISS Crossbeamシリーズは、次世代型集束イオンビームカラム、イオンスカルプターを搭載しています。ハイスループットには高電流、高品質な試料作製には低加速電圧を用い、すばらしい性能を発揮します。

Optional add-on
Optional add-on
Optional add-on:
A navigation camera is mounted on the airlock, here on ZEISS Crossbeam 550 L, but it could also be mounted on an airlock of a ZEISS GeminiSEM or the chamber of a ZEISS EVO.

1. Automated navigation to the specimen’s region of interest (ROI)

  • Begin the workflow without time-consuming search for the ROI
  • Use the navigation camera on the airlock to locate specimens
  • The integrated user interface makes it easy to navigate to your ROI
  • Benefit from the large, distortion-free field of view in the SEM
Lamella of a copper sample ready for lift out
Lamella of a copper sample ready for lift out
Lamella of a copper sample ready for lift out
Fabricated with automatic sample preparation, prepared and imaged by FIB. Field of view 76.22 µm.

2. Automated Sample Preparation (ASP) to prepare a lamella out of the bulk

  • Start the preparation with a simple three-step process: ASP
  • Define the recipe including drift correction, deposition and coarse and fine milling
  • The ion optics of the FIB column enables high throughput for the workflow
  • Duplicate the recipe and repeat as often as required in order to start a batch preparation
Part of the TEM lamella preparation workflow in a ZEISS Crossbeam
Part of the TEM lamella preparation workflow in a ZEISS Crossbeam
Part of the TEM lamella preparation workflow in a ZEISS Crossbeam
the needle of the micromanipulator with the TEM lamella attached is lifted out from the bulk.

3. Lift out

  • Bring in the micromanipulator and attach the lamella to its tip
  • Cut out the lamella from the bulk
  • The lamella is then ready for lift out and can be transferred to a TEM grid
TEM lamella of a silicon sample after final thinning
TEM lamella of a silicon sample after final thinning
TEM lamella of a silicon sample after final thinning
This split image lets the user control thickness and surface quality simultaneously. The thinned area appears bright in the SE image.

4. Thinning: the final step is crucial, as it defines the quality of your TEM lamella

  • The instrument’s design allows you to reach a desired thickness of the lamella by enabling live monitoring of the thinning
  • Use two detector signals in parallel to judge lamella thickness and obtain reproducible end thickness on the one hand (with the SE detector) and to control surface quality on the other hand (with the Inlens SE detector)
  • Prepare high quality samples with negligible amorphization
360° view of Crossbeam 550
0%

The Technology Behind ZEISS Crossbeam

SEM Electron Optics

Choose between Two Columns

The FE-SEM column of ZEISS Crossbeams is based on Gemini electron optics as all ZEISS FE-SEMs. Decide on the Gemini VP column of Crossbeam 340 or the Gemini II column of Crossbeam 550.

Electron Optics
 

Gemini - Novel Optics

Profit from Surface Sensitive Imaging

High resolution imaging at low landing energy is required for beam sensitive, non-conductive samples. A two-step deceleration modus, the Tandem decel, is now introduced to ZEISS Crossbeam 550.

Novelties in Gemini Technology
 

FIB-SEM Technology

Discover a new way of FIB processing

The Ion-sculptor FIB column speeds up your FIB work without compromising machining precision and lets you benefit of its low voltage performance for any sample.

FIB-SEM Technology

ZEISS Crossbeam Family

ZEISS Crossbeam 340 standard chamber

ZEISS Crossbeam 340: standard chamber

ZEISS Crossbeam 340 standard chamber
ZEISS Crossbeam 340 standard chamber

ZEISS Crossbeam 550: large chamber

ZEISS Crossbeam 550: large chamber

ZEISS Crossbeam 550: large chamber
ZEISS Crossbeam 550 with large chamber

Within ZEISS Crossbeam Family you have the choice between Crossbeam 340 or Crossbeam 550. Exploit the variable pressure capabilities of Crossbeam 340. Or use Crossbeam 550 for your most demanding characterizations and choose the chamber size, standard or large, that best suits your samples.  

  ZEISS Crossbeam 340 ZEISS Crossbeam 550
SEM Gemini I VP optics
               - 
Gemini II optics
Tandem decel option 
Chamber Size and Ports standard with 18 ports standard with 18 configurable ports or large with 22 configurable ports
Stage 100 mm travel range in x/y standard with 100 mm or large 153 mm travel range in x/y
Charge Control Flood Gun
Local Charge Compensation
Variable Pressure
Flood Gun
Local Charge Compensation
                  -
Exemplified Options Inlens Duo for sequential SE/EsB* imaging
VPSE detector
 
Inlens SE and Inlens EsB* for simultaneous imaging SE/EsB* imaging
large airlock for 8 inch wafers
configure three pneumatically driven accessories simultaneously on the large chamber, e.g. STEM, 4-Quadrant-Backscatter detetor, and local charge compensation
Advantages Maximum sample variety due to variable pressure mode, wide range of in situ experiments, sequential Inlens SE / EsB* imaging possible. High throughput in analytics and imaging, high resolution under all conditions, simultaneous Inlens SE and Inlens EsB* imaging.
    * SE secondary electron, EsB energy selective backscatter

Application Examples

  • Images
    Alumina spheres imaged with Tandem decel on Crossbeam 550

    Alumina spheres imaged with
    Tandem decel on Crossbeam 550

    Trench milled with 100 nA beam current

    Trench milled with 100 nA beam current

    Comparison of milling strategies on Crossbeam 550

    Comparison of milling strategies on Crossbeam 550

    TEM lamella in Ag-Ni-Cu multi-layer system

    TEM lamella in Ag-Ni-Cu multi-layer system

    Batch of 35 TEM lamellae

    Batch of 35 TEM lamellae

    STEM image and EDS elemental map of Cr depletion in steel

    STEM image and EDS elemental map
    of Cr depletion in steel

    Nanopatterning:
    Nanofluidics channels fabricated by FIB in a silicon master stamp (left).
    Detail: meander- shaped channel (center). Inlets and outlets have a funnel shape (right).
    Courtesy of: I. Fernández-Cuesta, INF Hamburg, Germany.  

    inlens_meander-channels-total_crossbeam-550

    Nanofluidic channels, master stamp

    Nanofluidic channels,  meander-shaped channels

    Nanofluidic channels, meander-shaped channels

    Nanofluidic channels,  funnel-shaped inlets and outlets

    Nanofluidic channels, funnel-shaped inlets and outlets

  • Videos
    Live imaging of FIB milling a spiral

    Live imaging of FIB-milling a spiral in silicon
    Imaged with the SEM using an Inlens detector.

    3D tomogram of a solid oxide fuel cell

    3D tomogram of a solid oxide fuel cell
    The SOFC’s anode is made of a heat resistant composite material: Nickel Samaria-doped Ceria.

    Investigation of a lead free solder containing Cu and Ag particles in an Sn matrix

    Tomography data of SEM images were acquired at 1.8 kV
    Courtesy of: M. Cantoni, EPFL Lausanne, Switzerland.

    Elemental mapping: EDS maps were acquired at 6 kV, using Atlas 5 Analytics.Courtesy of:  M. Cantoni, EPFL Lausanne, Switzerland.

    FIB-Tomography in Life Sciences
    Cell Biology – Algae

    Cell Biology – Algae
    3D reconstruction of a vitrified Emiliania huxleyi coccolithophore obtained from a cryo-FIB-SEM image series. The 3D reconstruction shows the immature coccolith (in yellowish), a coccolith in statu nascendi (blue) and lipid bodies (red).
    Courtesy: L. Bertinetti, Max-Planck Institute of Colloids and Interfaces, Potsdam, DE and A. Scheffel, Max-Planck Institute Plant Physiology, Potsdam, DE.

    Neuroscience – Brain Sections

    Neuroscience – Brain Sections
    Large area milling and imaging of a brain section with the 3D module of ZEISS Atlas 5. High current allows fast milling and imaging of large fields of view up to 150 μm in width. The depicted brain image has a field of view of 75 μm in width and the sample was milled with a beam current of 20 nA.
    Courtesy: C. Genoud, FMI Basel, CH.

Software

ZEISS Atlas 5 – Master Your Multi-scale Challenge

Atlas 5 は仕事の負荷を減らします。: 様々なスケール、形式の画像で試料自体に相関する包括的な環境を構築します。 Atlas 5 はパワフルで直感的なハードウェアとソフトウェアのパッケージで、集束イオンビームSEMの可能性を拡張します。

X線顕微鏡とFIB-SEMの相関: X線のデータを用いて、試料表面下の領域をFIBのターゲットとして3Dで特定 -そのままでは視認できなくても狙えます。

FIBーSEMアプリケーションに特化した2つの専用モジュール:3D Tomography モジュールが3Dのデータスタックを自動的に構築。ナノパターニングとプロトタイピングの複雑な課題にも、高度なナノパターニングと視覚化のためのエンジン(NPVE Advanced)で対応。


詳しく見る

Visualization and Analysis Software

可視化および解析ソフトウェア

ZEISS は Object Research Systems (ORS) の Dragonfly Pro をお奨めします。

X-線、FIBーSEM、SEM、ヘリウムイオン顕微鏡など、様々なテクノロジーで取得された3Dデータのための高度な解析と視覚化を行うソフトウェアです。
Visual SI Advanced の後継となる Dragonfly Pro は高品質の視覚化テクニックと優れたグラフィックを提供します。使い易い Python のスクリプトにより Dragonfly Pro はカスタマイズ可能です。 3Dデータの処理とワークフローをトータルでコントロールできるようになります。

詳しくはこちら

 

Downloads

ZEISS Crossbeam Family

Your FIB-SEM for High Throughput 3D Analysis and Sample Preparation

ページ: 22
ファイルサイズ: 5.549 kB

ZEISS Microscopy Solutions for Steel and Other Metals

Multi-modal characterization and advanced analysis options for industry and research

ページ: 22
ファイルサイズ: 12.439 kB

X² STEM Lamella Preparation from Multicomposite Organic Electronic Devices with ZEISS FIB-SEMs

Application Note

ページ: 6
ファイルサイズ: 883 kB

Technology Note: ZEISS Focused Ion Beam Column

Enabling Precision and long-term Stability for Cutting Edge Crossbeam Applications

ページ: 6
ファイルサイズ: 1.891 kB

ZEISS Crossbeam Family

High Resolution STEM and EDS Study of Chromium Depletion in Stainless Steel

ページ: 5
ファイルサイズ: 1.615 kB

ZEISS Crossbeam 550

High Throughput Imaging

ページ: 5
ファイルサイズ: 2.045 kB

ZEISS Crossbeam

Reproducible TEM Lamella Thinning by FIB with Real-time Thickness Control and End-point Detection

ページ: 5
ファイルサイズ: 1.395 kB

Application Note:

FIB-SEM Investigations of the Microstructure of CIGS Solar Cells

ページ: 7
ファイルサイズ: 1.388 kB

Cathodoluminescence of Geological Samples:

Fluorite Veins

ページ: 5
ファイルサイズ: 5.477 kB